Fabriquer sa station de soudage
Fabrication d’une station de soudage utilisant les pannes de fer Weller de la gamme RT
Sommaire
Présentation
Les stations de soudage régulées de bonne facture sont souvent onéreuses. L’objectif de ce hack est de vous proposer la fabrication de votre propre station de soudage à un coût abordable. Un des constructeurs les plus réputés du marché a eu l’excellente idée de fabriquer des stations et donc des pannes de fers cumulant plusieurs avantages :
- Une gamme de panne étendue : allant d’une panne conique très fine dédiée à la soudure de composants CMS jusqu’à des pannes biseautées de 2,2 mm, soit une quinzaine de références de pannes différentes.
- Elles sont interchangeables facilement, sans outil et à chaud.
- Elles utilisent un connecteur unique et très courant : une fiche jack de 3,5 mm de diamètre stéréo.
- Chaque panne dispose de sa cartouche chauffante et de sa sonde de température
- Elles sont ergonomiques et agréables à prendre en main
- Leur prix est raisonnable vis à vis de la qualité des pannes
Il s’agit des pannes Weller de la gamme RT.
Autant le tarif des pannes est relativement bon marché que le prix des stations et des fers à souder de la marque peuvent fortement rebuter.
L’idée de ce hack est donc de combiner l’utilisation de pannes de fer de gamme professionnelle à la fabrication d’une station de soudage "maison" bon marché et tout aussi efficace que celle proposée par Weller.
Le hack repose sur le retro engineering d’une station Weller RT qui, au final, fonctionne comme une boucle fermée d’asservissement en température : le bricoleur définit une consigne de température pour son fer, la station envoie de l’énergie vers la panne pour la faire chauffer, la panne renvoie une information de température à la station qui va adapter l’énergie à envoyer la panne. En dessous de la consigne, on fait chauffer la panne ; au-delà de la température, on stoppe le chauffage.
Le signal envoyé par la station de soudage est un signal de type carré dont le rapport cyclique va varier (signal PWM). Il s’agit de signaux en forme de créneaux envoyés à la résistance chauffante de la panne dont le temps à l’état haut sera plus ou moins long en fonction de l’augmentation de température souhaitée. Plus le créneau à l’état haut sera long, plus la panne chauffe.
La gestion de l’ensemble doit donc pouvoir inclure :
- Une interface utilisateur permettant de définir un point de consigne : ie. la température du fer à souder
- Un affichage de la consigne
- Une entrée permettant de faire varier la consigne
- L’interprétation du signal retourné par la sonde de température
- La régulation de la température
- La génération d’un signal PWM dont le rapport cyclique va varier en fonction de la consigne et de la température détectée par la sonde de la panne
- Une indication visuelle du rapport cyclique actuel : ça chauffe à fond pour la montée initiale en température, ça maintient la température, température de veille.
Tout cet ensemble sera géré par un composant programmable : un Arduino/Genuino Nano
Coût
Tarif évalué en mars 2017. La construction de ce hack vous revient à xxx euros. Fix Me !
Vous pouvez ajouter les informations manquantes !!!
Niveau de difficulté
Outillage nécessaire
- Gravure des cartes
- Mini CNC
- Fraise conique ou pointe javelot
- Scie à métaux (détourage des cartes)
- Toile émeri + brosse métallique
- Mini perçeuse
- Forêts de 0,6 et 0,8 mm
- Montage des cartes
- Fer à souder
- Etain, tresse ou pompe à dessouder
- Pince coupante à raz
- Pince à becs plats
- Gaine thermorétractable diamètre 2,4 mm
- Paire de brucelles ou précelles
- Tournevis plat
- Lunettes de protection
- Programmation de l'Arduino Nano
- Un PC
- Cordon mini USB – USB A
- Logiciel de compilation Arduino (téléchargement sur www.arduino.cc)
- Vérification du montage
- Un oscilloscope (facultatif)
- Un briquet
Composants nécessaires
Composant | Quantité | Référence | Référence Farnell |
---|---|---|---|
Arduino/Genuino Nano |
1 |
ATMega 328P |
non disponible |
Arduino Nano compatible | 1 | ||
Alimentation 12Vdc 5A | 1 | ||
Câble souple LIYY 4x0,25mm2 | 1 | ||
Amplificateur opérationnel de mesure | 1 | Texas Instruments OPA2336 | 1097396 |
Support de CI DIL8 lyre | 1 | Support DIL8 lyre | 1077344 |
Fet de puissance | 1 | Infineon IPP80P03P4L-04 (TO-220) | 2443406 |
Afficheur 7 segments 20 mm cathode commune | 3 | LTS-313AG | |
Fiche d'alimentation | 1 | Dépend du bloc d'alimentation | |
Barrette HE14 femelle 15 pin | 2 | 1667535 | |
10 nF / 100 V | 2 | 10 nF / 100 V disque céramique | 1827843 |
100 nF / 50 V | 1 | 100 nF / 50 V disque céramique | 1600815 |
Led diamètre 5 mm | 1 | Led diamètre 5 mm jaune | 1208852 |
Fet N petits signaux | 4 | BS170 (TO92) | 1077687 |
R68k | 1 | 68 kΩ 1/4W 1% | 2329965 |
R100 | 1 | 100 Ω 1/4W 1% | 2329853 |
R220 | 9 | 220 Ω 1/4W 1% | 9339299 |
R1k | 4 | 1 kΩ 1/4W 1% | 9339051 |
R5k6 | 1 | 5,6 kΩ 1/4W 1% | 2411043 |
R10k | 2 | 10 kΩ 1/4W 1% | 9339060 |
R100k | 1 | 100 kΩ 1/4W 1% | 2329853 |
Fiche jack femelle 3,5mm stéréo | 1 | Neutrik NYS240BG | 1390177 |
ILS - Interrupteur reed | 1 | Normalement ouvert (option) | 2453568 |
Encodeur rotatif avec bouton poussoir | 1 | Alps EC11K1524402 | 2064998 |
Cordon 5 broches 1,5m droit M12 sortie fils | 1 | Phoenix SAC-5P-M12MS/1,5-PUR | 1669767 |
Schémas
Étape par étape
Liens
Auteurs
Licence de la page
Attribution - Partage dans les Mêmes Conditions 3.0 non transposé (CC BY-SA 3.0)
Vous êtes libre de :
- partager — reproduire, distribuer et communiquer l’œuvre
- remixer — adapter l’œuvre
- d’utiliser cette œuvre à des fins commerciales
Selon les conditions suivantes :
- Attribution — Vous devez attribuer l’œuvre de la manière indiquée par l’auteur de l’œuvre ou le titulaire des droits (mais pas d’une manière qui suggérerait qu’ils vous approuvent, vous ou votre utilisation de l’œuvre).
- Partage dans les Mêmes Conditions — Si vous modifiez, transformez ou adaptez cette œuvre, vous n’avez le droit de distribuer votre création que sous une licence identique ou similaire à celle-ci.